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Abstract Background/purpose: Oral squamous cell carcinoma (OSCC) is notorious for its low
survival rates, due to the advanced stage at which it is commonly diagnosed. To enhance early
detection and improve prognostic assessments, our study harnesses the power of machine
learning (ML) to dissect and interpret complex patterns within mRNA-sequencing (RNA-seq)
data and clinical-histopathological features.
Materials and methods: 206 retrospective Vietnamese OSCC formalin-fixed paraffin-embedded
(FFPE) tumor samples, of which 101 were subjected to RNA-seq for classification based on gene
expression. Then, learning models were built based on clinical-histopathological data to
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predict OSCC subtypes and propose potential biomarkers for the remaining 105 samples.
Results: 2 distinct groups of OSCC with different clinical-histopathological characteristics and
gene expression. Subgroup 1 was characterized by severe histopathologic features with im-
mune response and apoptosis signatures while subgroup 2 was denoted by more clinical/path-
ological features, cell division and malignant signatures. XGBoost and SVM (Support Vector
Machine) models showed the best performance in predicting subtype OSCC. The study also pro-
posed 12 candidate genes as potential biomarkers for OSCC subtypes (6/group).
Conclusion: The study identified characteristics of Vietnamese OSCC patients through a com-
bination of mRNA sequencing and clinical-histopathological analysis. It contributes to the
insight into the tumor microenvironment of OSCC and provides accurate ML models for
biomarker prediction using clinical-histopathological features.
ª 2024 Association for Dental Sciences of the Republic of China. Publishing services by Elsevier
B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.
org/licenses/by-nc-nd/4.0/).
Introduction

OSCC is particularly concerning due to its high recurrence
rates in Asia, affecting 50e60% of advanced cases and
25e30% of early-stage cases.1 It highlights the critical need
for targeted strategies in prevention and treatment. Based
on whole-exome sequencing of 120 Asians, the genetic
landscape of OSCC reflects its etiology and therapeutic
implications.2 The advent of ML revolutionizes medicine,
enabling precise, data-driven approaches for cancer clas-
sification and analysis of complex datasets.3 They construct
predictive models through example-based learning, fine-
tuning parameters for optimal performance.4 In OSCC, a
disease marked by pronounced tumor microenvironment
heterogeneity, ML synergizes with RNA-seq and clinical-
histopathological analysis to forge a powerful alliance.5,6

This confluence is instrumental in dissecting the unique
oncological landscape of each patient, necessitating
bespoke treatment modalities for tailored and prognosti-
cally favorable therapies.7

Given the regional variations in OSCC etiology, it is
plausible that the cancer microenvironment in Asia is
distinct. In Vietnam, the local OSCC landscape is poorly
understood, and insights into genomic, clinical, and path-
ological data are lacking. Here, we performed RNA-seq on
Vietnamese OSCC samples and then clustered and classified
by different ML models using clinical-histopathological
features suggesting novel biomarkers and clinical
evaluation.
Materials and methods

Study design

206 retrospective FFPE tissue samples from primary OSCC
patients without prior interventions were obtained at Ho
Chi Minh City Oncology Hospital over 2019e2022 (Fig. 1 and
Supp. Data S1) with clinical data such as tumor location,
clinical/pathologic stage, and tumoral recurrence status.
Patients had prior tumor resection and lymph node dissec-
tion, providing suitable specimens for histopathology, and
RNA-seq (Supp. Doc. S1 and S2).
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A subset of 101 patient samples underwent RNA-seq,
clinical-histopathological scoring, and ML algorithms to
construct predictive models of gene expression based on
RNA-seq data, which would subsequently identify potential
novel OSCC biomarkers. Then, 105 OSCC non-RNA-seq data
with only clinical-histopathological features were analyzed
using the predictive models. Study was approved by Ethics
Committee (No. 441/2021, 184/2024). Data produced in
this study is available at www.oscc.vn.

Bulk mRNA sequencing

FFPE samples were cut into 6e8 mm thick slices to prepare
for RNA-seq by our reported optimized methods.8 In brief,
total RNA was extracted using PureLink FFPE RNA Isolation
Kit (Invitrogen, Waltham, MA, USA). cDNA was synthesized
and then sequenced by MiniSeq Sequencing System (Illu-
mina, San Diego, CA, USA). RNA-seq data were then passed
quality control and trimming by TrimGalore (v0.6.10)
following quantifying abundances of transcripts by Kallisto
(v0.46.1) using the human transcriptome index (Homo sa-
piens GRCh38, release 107_k31).9

RNA-seq data analysis and unsupervised clustering

Raw count data were transformed to relative gene
expression by vst function (DESeq2 v1.42).10 Since RNA-seq
data were generated in multiple batches of sequencing, we
performed batch effect correction with Limma (v3.60.2).
Gene expression data were fed to a 100-fold consensus K-
means clustering (ConsensusClusterPlus v1.66) to initially
identify clusters.11 Only 1,000 most variable genes were
included in the clustering step. Differential gene expression
analysis was performed in a one-versus-rest strategy be-
tween groups using DESeq2.

Pathway analysis and cell type deconvolution

Pathway analysis was performed using the clusterProfiler (v
4.12.0). In short, we employed both the Over-
Representation Analysis (ORA) and the Gene Set Enrich-
ment Analysis (GSEA) using the normalized gene expression
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Figure 1 Study design. 101 OSCC samples were RNA-sequenced then classified into subgroups based on gene expression. Clinical,
histological features obtained from health records and H&E staining were used to build machine learning models to predict OSCC
subgroups from clinical and histopathological scores and suggest novel biomarkers for OSCC with new 105 OSCC non-RNA-seq
samples. OSCC, oral squamous cell carcinoma.
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matrix of top-1000 most variable genes.12 For ORA, we
ranked the enriched pathways by their GeneRatio. For
GSEA, enriched pathways were ranked by their absolute
NES values. Our gene list was tested against well-curated
gene-set databases: Hallmark, GO, KEGG, C4eC6 MSigDB
cancer gene-sets.

Cell type deconvolution was performed by CIBER-
SORTx.13 This provided an estimate of cell type abundances
presenting in the RNA-seq sample. We used signature genes
from head-neck squamous cell carcinoma (HNSCC) single-
cell RNA-seq data as reference matrix.14

Histopathological analysis

Each FFPE sample was cut into 3e4 mm thick slices for
hematoxylin and eosin (H&E) staining and then be scored to
assess histopathological features (Supp. Doc. S2) including
the growth pattern of the tumor, the depth of invasion
(DOI), and specific grading parameters from established
systems such as Bryne grading system,15 World Health Or-
ganization (WHO) system, The Brandwein-Gensler risk
model. For histopathological analysis and scoring, Extra-
nodal extension (ENE) was excluded due to not being
collected in the same FFPE primary tumor samples.16,17

Machine learning models

We used 16 clinical and pathological features from health
records and 12 histopathological features to construct the
ML models. The 55-age cutoff was by average 52e58 diag-
nosis age of Vietnamese oral carcinoma,18e20 similar to a
report in Taiwan.21 We scored all features into 1e8 scores
for modeling. Minor feature ‘levels with low case numbers
were integrated or removed to reduce the total levels and
sharpen features. From the genomic subtypes obtained
from the clustering of transcriptomics data, we merged
clusters and then used as labels. We implemented Gaussian
S83
Naive Bayes (GaussianNB), Multinomial Naive Bayes (Multi-
nomialNB), Complement Naive Bayes (ComplementNB),
Bernoulli Naive Bayes (BernoulliNB), XGBoost, Support
Vector Machine (SVM), Logistic Regression (LR) classifica-
tion models to perform the subtype classification task. To
account for the limitation in dataset size, we implemented
a leave-one-out cross-validation (LOOCV) strategy. Hyper-
parameters tuning was performed for each model to
select the best combination of parameters. Model predic-
tive performance was measured by the LOOCV accuracy and
area-under-the-curve (AUC).

Suggesting novel biomarkers of OSCC groups and
survival analysis

From the upregulated gene lists in each group, we selected
12 genes with the highest log2 fold changes, reported roles
in various types of cancer but not clearly in OSCC by Human
Protein Atlas with immunohistochemistry (IHC) images of
the designated genes in HNSCC primary tumors (medium-to-
high expression) (www.proteinatlas.org, v.23). These
makers also passed gene-protein reliability scores
(Enhanced, Supported or Approved). Using HNSCC from The
Cancer Genome Atlas (TCGA) database (https://portal.gdc.
cancer.gov), survival analysis was carried out based on the
gene expression of suggested markers by GEPIA2 with a log-
rank test.22

Statistical analyses

Data was analyzed by JASP v0.18.3. Multiple unpaired t-test
and Hom-Sidak correction was used to compared groups.
Differential gene expression analysis optimized the number
of genes with adjusted P-values <0.05. The interrater
reliability of the histologic scores obtained from the two
oral pathologists was evaluated using Kappa statistics with
k Z 0.81e1.00.23

http://www.proteinatlas.org
https://portal.gdc.cancer.gov
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Results

Gene expression identified 2 subgroups of OSCC
samples

Consensus clustering of OSCC RNA-seq identified 2e3
reasonable clusters (Fig. 2A). Gene expression of OSCC
well-known makers including Catenin b-1 (CTNNB1), Lami-
nin subunit g-1 (LAMC1), Ki-67 (MKI67) upregulated in
cluster 1e3 and P-Cadherin (CDH3), Laminin subunit g-2
(LAMC2), L-myc-1 proto-oncogene protein (MYCL), Vascular
endothelial growth factor A (VEGFA) upregulated in cluster
2 (Supp. Fig. S1). Cluster 1 and 3 shared the similar
expression of these markers, then were merged into sub-
group 1 (71 cases) and cluster 2 as subgroup 2 (30 cases) for
further investigation (Fig. 2B). Differential analysis of RNA-
seq data clearly distinguished the expression pattern of
these 2 subgroups of OSCC (Fig. 2C and D).

Different pathways and cell types highlighted
distinct biological processes

Cell type deconvolution revealed the cellular components
of OSCC samples (Fig. 3A). Group 1 enhanced significantly
CD8 T-cells, dendritic cells, fibroblasts, endothelial cells;
group 2 enriched CD4 T-cells, malignant cells (mutated
epithelial cell signatures).

Enrichment analysis elucidated the contrast functions in
each subgroup. In KEGG pathways, subgroup 1 increased
immune responses, apoptosis, p53 signaling. Meanwhile,
autophagy, cell metabolism and cycle were upregulated in
subgroup 2 (Fig. 3B). In HALLMARK, GO and C4eC6 MSigDB
cancer gene-sets pathways, subgroup 1 increased
epithelialemesenchymal transition, p53 signaling while
subgroup 2 boosted cell division and metabolism (Fig. 3C
and Supp. Fig. S2).

Clinical-histopathological characteristics of 2 OSCC
subgroups

Clinical-histopathological features from medical records
and scored H&E staining identified distinguished natures of
OSCC groups (Fig. 3D and E, Supp. Fig. S3). By medical re-
cords, subgroup 1 was characterized by older (�55-year-
old) almost male, higher family cancer history, alcohol
drinking, pathological grade and occult lymph node
metastasis. They were lower in clinical/pathological tumor
size, clinical node metastasis and clinical/pathological
stage. Subgroup 2 was characterized by younger (<55-year-
old), increased female numbers, higher clinical/patholog-
ical tumor size, clinical node metastasis and clinical/
pathological stage. This subgroup was lower in family/
drinking history, pathological grade and occult lymph node
metastasis.

H&E staining of local primary tissues regarding RNA-seq
demonstrated the different pictures (Figs. 3DeF and 4A,
Supp. Fig. S3). Subgroup 1 enhanced lower depth of inva-
sion (�5 mm), less keratinization, moderate lympho-
plasmacytic infiltration. They were more exophytic growth
patterns, high nuclear polymorphism, intermediate Bryne
S84
scores, higher WHO system grades, more tumor satellites of
worst pattern of invasion, and higher BrandweinGensler risk
level. Subgroup 2 improved more endophytic growth
pattern, depth of invasion (>5 mm), highly keratinized,
marked lymphoplasmacytic infiltration, large separate
islands of worst pattern of invasion. This subgroup had less
nuclear polymorphism, lower Bryne scores, WHO systems
grades, and BrandweinGensler risk levels.

Taken-together, OSCC was categorized into subgroup 1
with older drinking males, more severe histopathologic
features, immune response and apoptosis/p53 signatures.
Subgroup 2 was denoted by younger less-drinking, more
clinical/pathological features, cell division/repair and
malignant signatures.

Machine learning model predicted OSCC subgroups

To ascertain whether clinical-histopathological character-
istics and their genomic subgroups are synchronized, we
predicted the OSCC genomic subtypes for our 101 samples
by implementing a LOOCV classification system using 6 ML
models. We used the genomic subtypes training labels for
the model and a binary representation of the clinical-
histopathological scores as training features. The accuracy
of each model was measured to assess the predictive power
of this system (Fig. 4C). Within 6 models, XGBoost and SVM
performed highest average accuracies (71.4% and 70.5%,
respectively), then LR and MultinomialNB (69.5% and 68.5%,
respectively). XGBoost and SVM models also got similar
proportion of predicted subgroups on 105 new OSCC non-
RNA-seq samples using clinical-histopathological charac-
teristics while other models perform skew results (Fig. 4D).
AUC presented by receiver operating characteristic (ROC)
curve plots of XGBoost and SVM were 0.69 and 0.68,
respectively, LR and MultinomialNB were 0.59 and 0.69
respectively (Fig. 4E and Supp. Fig. S4A).

Clinical-histopathological characteristics of 2 predicted
subgroups using XGBoost and SVM were similar to subgroups
1 and 2 of OSCC RNA-seq samples (Fig. 4BeF and G, Supp.
Fig. S4B). However, XGBoost trended to predict better in
pathological diagnosis, occult lymph node metastasis,
depth of invasion, lymphoplasmacytic infiltration while SVM
predicted better in clinical/pathologic tumor size, clinical
node metastasis, pathologic stage, drinking, pattern of in-
vasion, worst pattern of invasion (Supp. Figs. S5 and S6).
Hence, XGBoost and SVM were the optimal ML models for
OSCC genomic subgroup classification using clinical, path-
ological and histological information as input.

Suggesting novel biomarkers for OSCC subgroup

From the differential expression gene lists that upregulated
in each OSCC subgroup, we selected 12 significant genes (6/
group) with the highest foldchange, reported roles in
various types of cancer but not clearly in OSCC by Human
Protein Atlas (Fig. 5A, Supp. Data S2 and S3). These genes
were also approved to enhanced in IHC reliability score
(Supp. Fig. S7A). Subgroup 1 significantly upregulated ADNP
(Activity-dependent neuroprotector homeobox), HNRNPD
(Heterogeneous nuclear ribonucleoprotein D), RESF1/
KIAA1551 (Retroelement silencing factor 1), SLAIN2 (SLAIN



Figure 2 OSCC RNA-seq data was divided into 2 groups. (A) Consensus matrix heatmaps of 101 OSCC RNA-seq samples that were
clustered by consensus for k Z 2 (left panel) and k Z 3 (right panel). The consensus degree was represented by color gradients
ranging from 0 to 1. (B) UMAP plot of 101 OSCC RNA-seq samples based on gene expression. Cluster 1 and 3 were grouped into group
1, cluster 2 as group 2. (C) Heatmap of top 50 significant differential genes in 2 subgroups of OSCC. The scaled expression degree
was represented by colour gradients. (D) Expression comparison of selected known OSCC markers in 2 subgroups of OSCC RNA-seq
samples. OSCC, oral squamous cell carcinoma; P.ad, adjusted P-values; n.s., not significant.
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Figure 3 Characteristics of 2 OSCC sub groups. (A) CIBERSORTX deconvolution of proportions of different cell population in 2
subgroups of OSCC RNA-seq samples. Myocytes and mast cells were not shown (not significant). (B) Enrichment analysis of top KEGG
pathways upregulated in group 1 (left panel) and group 2 (right panel) of OSCC RNA-seq samples. (C) Enrichment analysis of top
HALLMARK pathways upregulated in group 1 (upper panel) and group 2 (lower panel) of OSCC RNA-seq samples. (D) Radar plots of
distribution of clinical and histopathological features of group 1 (left panel) and group 2 (right panel) of OSCC RNA-seq samples.
Primary tumor site features were not included for the clear and concise data visualization. (E, F) Alluvial diagrams of selected
features from health records (E) and H&E staining (F) of 2 subgroups of OSCC RNA-seq samples (See supplementary Fig.S3 for full
information). OSCC, oral squamous cell carcinoma; P.ad, adjusted P-values; n.s., not significant.
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Figure 4 Building machine learning models for OSCC subgroup prediction. (A) H&E staining of cases #2 targeted group 1 (left panel)
and #3 targeted group 2 (right panel) of OSCC RNA-seq sample (Scale bar 100 mm). (B) H&E staining of cases #106 predicted group 1
(left panel) and #108 predicted group 2 (right panel) of OSCC non-RNA-seq samples. These samples were predicted identically by using
XGBoost and SVM models. (C) Average accuracy of 6 different machine learning models. 0e9 folds were performed to calculate the
accuracy. (D) Alluvial diagrams of the distribution of predicted groups (group 1 and group 2) of OSCC non-RNA-seq samples using 6
different models. (E) Receiver operating characteristic (ROC) curve plots of XGBoost (left panel) and SVM (right panel) models and
area-under-the-curve (AUC) values. 0e9 folds were performed to calculate the AUC. (FeG) Radar plots of distribution of clinical and
histopathological features of predicted group 1 (left panel) and predicted group 2 (right panel) of OSCC RNA-seq samples using
XGBoost (F) and SVM (G) models. Primary tumor site features were not included for the clear and concise data visualization. OSCC,
oral squamous cell carcinoma; GaussianNB, Gaussian Naive Bayes; MultinomialNB, Multinomial Naive Bayes; ComplementNB, Com-
plement Naive Bayes, BernoulliNB, Bernoulli Naive Bayes; SVM, Support Vector Machine; LR, Logistic Regression.
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Figure 5 Novel markers of OSCC sub groups were investigated. (A) Heatmap of 12 significant differential suggested novel markers
in 2 subgroups of OSCC. The scaled expression degree was represented by colour gradients. (B) Expression comparison of 12
suggested novel markers in 2 subgroups of OSCC RNA-seq samples (P.ad, adjusted P values). (C) Survival analysis of signature genes
(ADNP, HNRNPD, RESF1/KIAA1551, SLAIN2, SLK and WAC) on TCGA-HNSCC tumor samples. (D) Survival analysis of signature genes
(BAG1, FKBP8, GIGYF1 and OGFR) on TCGA-HNSCC tumor samples. E Survival analysis of signature genes (MARCKS and MGAT1) on
TCGA-HNSCC tumor samples. HNSCC, head and neck squamous cell carcinoma; TCGA, The Cancer Genome Atlas; P.ad, adjusted P-
values.
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motif family member 2), SLK (STE20 like kinas), WAC (WW
domain containing adaptor with coiled-coil). Subgroup 2
significantly upregulated BAG1 (BAG cochaperone 1, anti-
apoptotic activity), FKBP8 (FKBP prolyl isomerase 8),
S88
GIGYF1 (GRB10 interacting GYF protein 1), MARCKS (sub-
strate for protein kinase C), MGAT1 (Myristoylated alanine-
rich protein kinase C substrate), OGFR (Opioid growth fac-
tor receptor) (Fig. 5B).
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Finally, we analyzed the overall survival of TCGA-HNSCC
patients with the combination of expression or single gene
expression using KaplaneMeier plots (Fig. 5CeE, Supp.
Fig. S7B). Interestingly, survival analysis of subgroup 1
markers (6 genes) demonstrated high cumulative survival
probability with 40% up to 150 months (>6 years) in high
expression group (Fig. 5C). In subgroup 2, combination of
BAG1, FKBP8, GIGYF1 and OGFR high expression increased
the HNSCC cumulative survival probability up to 40% at 150
months and 20% at 200 months (>8 years) (Fig. 5D). In
contrast, MARCKS and MGAT1 combination reduces the cu-
mulative survival probability to only 20-10% after 150e200
months (Fig. 5E). All the above findings indicated the
different roles of these novel suggested markers in OSCC
genomic subgroups.
Discussion

For the first time, we presented the use of ML combined
with genomic data decoding and clinical-histopathological
analysis to characterize Vietnamese OSCC patients allowing
for a less expensive clinical histology-based method of
cancer investigation. SVM, effective with small datasets,
identifies optimal hyperplanes for binary classification and
handles high-dimensional spaces using Kernel functions,
and has been used successfully in the subgroup of rheu-
matoid arthritis with 45 samples.24 XGBoost, with advan-
tages like higher accuracy, robustness with missing data,
and parallelization.25

The study evaluates gene expression within the tumor
microenvironment, bridging molecular factors to clinical
and anatomical aspects in OSCC. We identified two distinct
subgroups based on RNA-seq data, consistent with clas-
sical clustering seen in oral premalignant lesions.26 The
concept of addressing interpatient tumor heterogeneity
and subclassifying disease based on parameters affecting
prognosis, predicting susceptibility to immunotherapy,
and achieving optimal therapy for each case has rein-
forced the need for personalized cancer management.27,28

Our research indicates that subgroup 2, characterized by a
higher proportion of female patients, lower alcohol con-
sumption history, larger tumor size, and increased clinical
node metastasis and clinical/pathological stage, presents
a phenotype that may be considered as a potential
candidate for immunotherapeutic interventions. There-
fore, we selected 12 significant genes with the highest fold
change.

In subgroup 1, novel markers are mainly in apoptosis and
transcription regulation functions with reported roles in
liver, lung, renal and pancreatic cancers. ADNP, HNRNP and
SLAIN2 are oncogenes impacting the development and
resistance of bladder, ovarian and colorectal cancers.29e31

RESF1, SLK and WAC play critical roles in tumor promoter
and metastasis.32e34 In subgroup 2, novel markers are
characterized by autophagy, cell metabolism and cycle,
and RNA repair. BAG-1, FKBP8, GIGYF1 and OGFR are anti-
apoptotic proteins correlating with the prognosis of
ovarian, kidney renal and gastric cancers. It holds promise
as a prognostic marker and represents an intriguing thera-
peutic target.35e38 MARCKS and MGAT1 (a novel transcrip-
tional target of the Wnt/b-catenin pathway) involved in cell
S89
processes like adhesion and motility, contribute to cancer
development, metastasis, and treatment resistance by
promoting cancer stem cell renewal and immunosuppres-
sion.39,40 These markers, although novel in the context of
OSCC, exert critical roles across various other cancers,
significantly impacting prognosis, metastasis, and drug
response. Their distinct gene expression patterns differ-
entiated 2 subgroups with different combined roles in the
survival of HNSCC patients, suggesting their potential as a
promising treatment strategy for managing OSCC. However,
these markers require further experimental validation
including IHC imaging data and functional studies to
establish their diagnostic and prognostic value.

Our study contributed insights into the tumor microenvi-
ronment of OSCC and provided an accurate ML model for
predicting biomarkers using only clinical-histopathological
features. These findings highlight the potential of inte-
grating advanced technologies like machine learning with
traditional diagnostic methods to improve the understanding
and management of OSCC in Vietnamese patients. Novel bio-
markers were suggested for each OSCC subgroup, providing
potential targets for future research and clinical applications.
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