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A B S T R A C T

Understanding the impact of exposure to air pollution on children’s health is critical for developing effective 
child health protection policies. Alveolar macrophage black carbon (AMBC) provides an indicator of personal 
exposure to air pollution. Hence, we aimed to examine air pollution exposure and its effects on children by 
measuring AMBC area and inflammatory cytokines in sputum. Sputum induction was attempted in 120 children 
aged 13–14 years, but samples of sufficient volume and quality for analysis were only obtained from 47 (39.2%). 
Alveolar macrophages (AMs) were visualized, and black carbon (BC) area quantified by microscopy. Participants 
completed questionnaires, recording air pollution exposure and respiratory symptoms. Univariable associations 
between AMBC area and respiratory symptoms, exposure variables, cytokines, and pulmonary function were 
examined. Multivariable regression was conducted, adjusting for potential confounders. The median AMBC area 
was 0.23 μm2 (range: 0.09–0.77 μm2). Most participants (87%) reported a history of respiratory symptoms. 
AMBC area was related to the distance from home to school, living on the main road, and the habit of opening 
windows for ventilation. No significant associations were seen between AMBC area and respiratory symptoms, 
lung function, or inflammatory markers (IL-8, TNF-α, IFN-α). Our findings support the use of AMBC area as a 
biomarker of individual air pollution exposure. The lack of associations between AMBC area and health outcomes 
is likely due to a lack of study power, indicating more extensive studies are required.

1. Introduction

Air pollution imposes a substantial global health burden, particularly 
in low- and middle-income countries (LMICs) in Southeast Asia (World 
Health Organization, 2022). In addition to household air pollution, 
ambient air pollution, especially particulate matter (PM10, PM2.5, i.e. 
particulate matter with aerodynamic diameters of 10 μm or less, and of 
2.5 μm or less, respectively) from traffic-related air pollution (TRAP), 
has adverse effects on human health at all life stages, negatively influ-
encing the respiratory, cardiovascular, and neurological systems 
(Holgate et al., 2016; Newby et al., 2015). Air pollution is especially 

harmful to children due to their immature respiratory, immune, and 
metabolic systems (Bateson and Schwartz, 2008).

TRAP results largely from the combustion of fuels, which generates 
particulate matter (PM10, PM2.5), black carbon (BC), and gaseous pol-
lutants. Individual exposure to TRAP is difficult to quantify, however BC 
has been used to indicate the extent of exposure (Quang et al., 2021; 
Romshoo et al., 2023). Long-term exposure to BC has been linked to 
increased risk of mortality and morbidity, reinforcing the notion that BC 
is a harmful component of PM2.5 (Nilsson Sommar et al., 2021; Strak 
et al., 2021; Wen et al., 2023; Yang et al., 2021).

A primary role of alveolar macrophages (AMs) is to provide defense 
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against inhaled xenobiotics, including PM, microbial species, and other 
foreign substances via phagocytosis and initiation of protective inflam-
matory responses. Alveolar macrophage black carbon (AMBC) has 
served as an indicator of both external exposure to air pollution and 
health responses (Bai et al., 2015). Consequently, measuring AMBC area 
has been suggested as a potential biomarker for assessing individual 
TRAP exposure (Bai et al., 2015; Terashima et al., 1997). In fact, the 
AMBC area has been used to investigate associations between air 
pollution exposure and lung function in children (Bai et al., 2015; Kul-
karni et al., 2006). However, most previous studies have not been con-
ducted in heavily polluted cities in LMICs where higher ambient BC 
concentrations are likely to result in greater AMBC area (Bai et al., 2018; 
Ji et al., 2020; Kurth, 2013). Additionally, factors influencing exposure 
are likely to differ between LMICs and more affluent settings. For 
example, research in Vietnam revealed that motorbike commuters 
experienced substantially higher ambient BC (up to three times) 
compared to passengers on buses or cars (Quang et al., 2021). A recent 
study, carried out in Ho Chi Minh City (HCMC), Vietnam, showed that 
the majority of residents use motorcycles for regular transportation (Ho 
et al., 2023). Riding motorcycles in heavily polluted cities is likely to 
result in higher BC exposure and higher AMBC area.

The current study aims to utilize the measurement of AMBC as a 
quantitative assessment of air pollution exposure to examine the impact 
of pollution exposure on the respiratory health of middle school chil-
dren. This is the first study to assess the effects of air pollution on in-
dividual children in Vietnam using these quantified biomarkers of 
exposure. HCMC was chosen as the study location due to its status as one 
of Vietnam’s most polluted cities. The annual mean PM2.5 concentra-
tions in HCMC have consistently exceeded both the air quality guide-
lines established by the World Health Organization (WHO) and the 
thresholds proposed by the National Technical Regulation on Ambient 
Air Quality in Vietnam (Nhung et al., 2022; World Health Organization, 
2021).

2. Methods

2.1. Study setting

The study was conducted in HCMC, one of the most densely popu-
lated cities in Vietnam, with an estimated population of 10 million 
(General Statistics Office, 2022). Fig. S1 displays the study area location, 
with red dots indicating participant locations.

2.2. Study population and recruitment

Participants were recruited from two randomly selected secondary 
schools in HCMC. Eligibility criteria included children aged 13–14 who 
had been residing in HCMC for at least the preceding six months to allow 
for the range of AMBC area mean half-lives of 53 and 116 days, 
depending on the BC load (Bai et al., 2018). Exclusion criteria included 
children suffering from chronic respiratory conditions or exhibiting 
symptoms indicative of respiratory, gastrointestinal, or urinary in-
fections in the three months leading up to the study. Forty children from 
one middle school (An Lac school) in the inner suburb and 40 children 
from Le Minh Xuan school in the outer suburb of the city met the study 
criteria and agreed to participate. An additional 40 children, who also 
met the selection criteria, were selected through word-of-mouth 
recruitment.

2.3. Study procedures

Questionnaires: Upon arrival at the clinic, the children and their 
guardians completed a self-administered questionnaire designed to 
obtain detailed information on general health, respiratory symptoms, 
mask usage habits, and both indoor and outdoor exposure to air pollu-
tion. It also incorporated the validated Vietnamese version of the 

International Study of Asthma and Allergies in Childhood (ISAAC) 
questionnaire to determine the children’s respiratory health status (Le 
et al., 2021). Height and weight were measured, and body mass index 
(BMI) was calculated.

Lung function testing: After explaining the procedures to the parents, 
the children underwent spirometry at the clinic. A CareFusion SN73335 
device was calibrated before each measurement and used to measure 
spirometry. Spirometry outcomes were forced vital capacity (FVC, L), 
forced expiratory volume in 1 s (FEV1, L), and forced expiratory flow 
between 25% and 75% of FVC (FEF25–75, L/s). These variables were 
expressed in absolute values and as percent predicted using the National 
Health and Nutrition Examination Survey (NHANES) III. The FEV1/FVC 
ratio was determined by dividing the value of FEV1 (L) by FVC (L). The 
results adhered to the technical standards recommended by the Amer-
ican Thoracic Society and the European Respiratory Society, which were 
adjusted for characteristics such as race, height, gender, and age 
(Graham et al., 2019).

2.4. Induced sputum collection

Subsequently, children underwent sputum induction using a stan-
dardized approach (Bai et al., 2018), wherein nebulized hypertonic sa-
line (3%) was administered over three consecutive, 5-min inhalation 
periods. To mitigate the risk of bronchospasm induced by the hypertonic 
saline, 400 mcg of salbutamol was administered via a metered-dose 
inhaler and spacer prior to sputum induction. Participants were 
encouraged to attempt sputum expectoration; this entailed deep 
coughing accompanied by intermittent huffing and hacking, culmi-
nating in the expulsion of sputum. The process was repeated at 5-min 
intervals for up to a maximum of 20 min; the procedure was termi-
nated if the participant exhibited any signs of wheezing or discomfort 
(Paggiaro et al., 2002).

In healthy children, the consistency of sputum is frequently watery 
and saliva-like. However, the presence of cellular plugs within the saliva 
is indicative of a viable sample. A minimum of 2 mL of sputum per 
sample was deemed sufficient for analysis. From 120 initial participants, 
we were able to collect 47 samples of sufficient volume and good quality 
for AMBC analysis (Fig. S2).

2.5. Sputum specimen processing

Sputum samples were processed within 2–4 h of collection to ensure 
optimal cell counting and effective staining (Pizzichini et al., 1996). The 
samples were stored refrigerated (temperatures 2–8 ◦C) between 
collection and processing. To break down the sputum plugs, 0.1% 
dithiothreitol (Thermo Fisher, USA) was added to sputum in a 1:1 vol 
ratio (Fahy et al., 1993; Gershman et al., 1996). Sputum samples were 
then cooled to 4 ◦C and homogenised on a horizontal shaker for 15 min. 
Subsequently, mucus and debris were removed by passing the samples 
through a 40 μm cell strainer (SPL Life Sciences, South) (Efthimiadis 
et al., 2002). The supernatant was aspirated and stored at − 80 ◦C for 
future cytokine analysis. Additionally, cell pellets were washed by 
adding 2 mL of phosphate-buffered saline (PBS) (Sigma-Aldrich, UK), 
followed by another round of centrifugation under the same conditions 
to remove the supernatant. The remaining cell pellet was then resus-
pended in 600 μL of PBS.

2.6. Differential cell count and evaluation of AMBC area

The protocol was adapted from a previous study (Jary et al., 2015). 
Initially, cell pellets were evenly distributed onto microscopic slides 
(Greetmed, China) and allowed to dry at room temperature for 10 min. 
The slides were then stained using Hemacolor Rapid staining (Merck 
Millipore, Germany), following the manufacturer’s instructions.

AMs were visualized using light microscopy. Digital color images of 
50 randomly chosen AMs from each participant were obtained with an 
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Olympus BX 43 microscope, utilizing a 100x objective lens and im-
mersion oil for clarity. These images were then uploaded for analysis 
into ImageJ 1.50i (National Institutes of Health, USA).

Deposits of BC within each AM were differentiated from other dark 
substances, such as nuclei and bacteria (which stain dark purple) that 
were either adhering to or being ingested by the AMs. The analysis 
provided AMBC area, measured in μm2, with mean (SD) calculated from 
50 AMs for each participant (Kulkarni et al., 2005).

2.7. Sputum cytokines measurement

Cytokine concentrations in all collected sputum samples were 
quantified using a commercially-available phase sandwich enzyme- 
linked immunosorbent assay (ELISA) (IL-8, TNF-α, and INF-α). These 
samples were analysed without dilution. Specifically, the concentrations 
of Interleukin 8 (IL-8), Tumor Necrosis Factor-alpha (TNF-α), and 
Interferon-alpha (IFN-α) were determined in the supernatants preserved 
from the samples. The sensitivity thresholds for these kits were <5 pg/ 
mL for IL-8, 1.7 pg/mL for TNF-α, and 3.2 pg/mL for IFN-α, respectively. 
This measurement was performed using a Varioskan™ LUX multimode 
microplate reader (Thermo Fisher, USA) equipped with SkanIt RE 6.1.1 
software.

2.8. Statistical analysis

Continuous variables were described using means and standard de-
viations (SD) or medians and interquartile ranges (IQR), as appropriate. 
Categorical variables were described using frequencies and percentages. 
Chi-square tests or Fisher’s exact tests were used to compare categorical 
variables between groups. To assess the relationship between respira-
tory symptoms and AMBC area, logistic regression was used. The Mann- 
Whitney U test was utilized to evaluate differences between AMBC area 
and exposure variables. The effect size for the Mann-Whitney U test was 
calculated by dividing the z value by the square root of N (Rosenthal, 
1994). To examine the bivariate correlations between AMBC area and 
variables such as biomarkers indicative of exposure to air pollution, the 
length of exposure, pulmonary function, and travel distances, Spear-
man’s correlation coefficients were determined. Linear regression ana-
lyses were used to evaluate the relationship between respiratory 
outcomes (inflammatory cytokines and lung function indicators) and 
AMBC area. Multivariable regression models were applied to adjust for 
potential confounders, including sex, weight, and height. A significance 
level of p < 0.05 was considered significant for all assessments. Data 
analyses were performed using Stata software for Windows, version 14.0 
(StataCorp LP, College Station, TX, USA).

2.9. Ethical approvals

The study protocol was approved by the Institutional Review Board 
of the Research Ethics Committee at the University of Medicine and 
Pharmacy at HCMC (789/UMP-BOARD). Written consent was obtained 

from the parents of the participating children.

3. Results

A total of 120 children were assessed in the initial evaluation. Of 
these, 90 participants provided sufficient sputum for analysis, and 47 
(24 males and 23 females) had sufficient AMs for further analysis. Fig. 1
shows AMs without and with phagocytose BC. A sputum sample with 50 
AMs is shown in Fig. S3.

Table S1 compares the characteristics of those participants who did 
and did not provide sufficient sputum samples for analysis. No signifi-
cant differences were found between the groups. Additionally, AMBC 
area was found to be 0.23 μm2 with an IQR of 0.09–0.77 μm2.

No significant associations were seen between the history of respi-
ratory symptoms (wheezing, sneezing, and rash) and AMBC area among 
healthy children (p > 0.05) (Table 1). The impact of exposure variables 
on AMBC area are shown in Table 2. Those associated with an increased 
AMBC area were opening windows for ventilation (p = 0.039), distance 
travelled from house to school (p < 0.001), and living on a main road (p 
= 0.01). We did not show an association between exposure to tobacco 
smoke and AMBC area, however, only two subjects with sufficient 
sputum were exposed to smoke.

Table 3 shows associations between AMBC area and pulmonary 
function and inflammatory cytokines. Linear regression analysis showed 
a statistically significant association between FEV1/FVC ratio and AMBC 
area (β = 0.02, 95% CI: − 0.001 to − 0.05, p = 0.04). However, a detailed 
analysis of the individual spirometric components indicated that this 
seemingly significant association was likely spurious. Both FVC [β =
− 3.81, 95% CI: − 9.94 to 1.33] and FEV1 [β = − 1.39, 95% CI: − 7.29 to 
4.51] showed negative coefficients, suggesting that the significant 
FEV1/FVC ratio finding was an artifact of parallel decreases in both 
measurements rather than a genuine physiological relationship. Our 
investigation found no convincing evidence for a relationship between 
respiratory function and AMBC area (Figs. 2 and 3, and Table 3).

4. Discussion

This is the first study in Vietnam exploring the impact of air pollution 
on individual children using AMBC area derived from sputum samples as 
a biomarker of exposure. The findings provide evidence of an associa-
tion between AMBC area and conditions likely to increase exposure, 

Fig. 1. AMs with phagocytosed BC: (a) Normal AM, (b) AM with phagocytosed BC (red arrow) from a sufficient sample, (c) AM with phagocytosed BC (red arrow) 
and bacteria (yellow arrow).

Table 1 
The relationship between history of respiratory symptoms and AMBC (n = 47).

Character History of 
wheezing

History of sneezing History of rash

OR p OR p OR p

AMBC area 
(μm2)

0.22 
(− 0.63 to 
1.06)

0.61 4.71 
(− 1.24 to 
10.66)

0.12 − 21.83 
(− 57.67 to 
14.03)

0.23
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namely open windows for ventilation (p = 0.03), living on a main road 
(p = 0.01) and distance travelled to school (p < 0.001), but was not 
associated with increased respiratory symptoms (wheeze p = 0.61, 
sneezing 0.12). The small sample size likely compromised our ability to 
link AMBC area to health outcomes.

Median AMBC area in our study was 0.23 (0.09–0.77) μm2, consis-
tent with levels in previous studies conducted in Leicestershire, England 
[0.41 (0.03–1.14) μm2] (Kulkarni et al., 2006) and London [0.30 
(0.20–0.52) μm2] (Liu et al., 2021) in healthy children. We had antici-
pated a higher AMBC area, given the high levels of air pollution in 
HCMC. Studies in adults have produced variable results. A recent study 
conducted on pregnant individuals revealed a decrease in AMBC area 
with a median (IQR) value of 0.12 (0.30) μm2 (Miri et al., 2022), 
whereas another study found higher AMBC area in adults suffering from 
chronic obstructive pulmonary disease (COPD), with the mean value of 
4.87 ± 4.41 μm2 (Yin et al., 2021). While it is possible that different 
immune responses in children, pregnant women, and adults may 
contribute to different AMBC area, this is more likely to vary with air 
pollution concentrations across different regions (Bai et al., 2018).

Another possible explanation for the lower than anticipated AMBC 

area in our study, was the high level of face mask wearing by the chil-
dren we studied. Face masks have been shown to lower BC exposure by 
6%–61% and PM2.5 exposure by 14%–96%, depending on mask type 
(Pacitto et al., 2019). A previous study in HCMC found that the use of a 
facemask by motorcyclists consistently reduced PM exposure, with 
surgical masks exhibiting significantly higher protective efficiency 
compared to cloth masks (Huy et al., 2022). The practice of 
mask-wearing among Vietnamese children is growing as a protective 
measure against air pollution and respiratory diseases post-COVID-19 
(Le et al., 2023). In the present study almost 90% of children regularly 
wore masks for protection, yet there was no significant difference in 
AMBC area between those who wore masks and those who did not. 
However, as only five non-mask wearing children produced sufficient 
sputum for analysis, these results need to be treated with caution.

The data in the present study are consistent with the notion that 
individual exposure to air pollution (i.e., PM) is associated with an in-
crease in inhaled BC, and hence AMBC area. In Vietnam, the lack of 
public transport infrastructure and local habits means that people prefer 
private over public transportation for school commutes, which increases 
the exposure to ambient BC (Quang et al., 2021). Our data show that the 
distance from home to school and proximity to main roads were asso-
ciated with an increase in AMBC area, consistent with previous studies 
(Bunn et al., 2001; Jacobs et al., 2010). In the present study, we found 
AMBC obtained from children residing in HCMC. None of the children in 
our study used charcoal stoves in their homes, minimizing the possibility 
that AMBC area was influenced by indoor air pollution. Thus, AMBC is 
highly likely to have come from TRAP exposure. Our results suggest that 
opening windows for ventilation increased AMBC area, likely due to the 
infiltration of outside PM into the inside space, as previously observed 
(Quang et al., 2017). Taken together, these data give confidence that 
AMBC area in our study was a reasonable biomarker of individual TRAP 
exposure.

Increased atmospheric concentrations of PM resulting from the 
combustion of fossil fuels and indoor air pollution has been associated 
with a higher prevalence of respiratory and allergic symptoms in chil-
dren (Endaryanto et al., 2023; Le et al., 2024). However, in our study, 
we did not find a significant association between respiratory symptoms 
and AMBC area, despite nearly 87% of participants reporting respiratory 
symptoms in the past. Previous research indicates that AMBC area may 
not consistently differ between asthmatic and non-asthmatic children; 
children with asthma were found to have lower AMBC than healthy 
children (Kulkarni et al., 2006). The lack of association may be due to 
the small sample size.

Previous studies also show increases in inflammatory cytokines with 

Table 2 
The relationship between other exposure factors and AMBC (n = 47).

Character n AMBC area (μm2) 
Median [IQR]

p Effect 
Size

Mode of transportation
Private transport 
(motorbike, bike, and 
walking)

44 0.21 [0.08 to 
0.78]

0.63 0.07

Public transport (bus, car, 
and taxi)

3 0.59 [0.13 to 
0.72]

 

Open door for ventilation
Yes 28 0.25 [0.06 to 

0.96]
0.88 0.02

No 19 0.19 [0.11 to 
0.77]

 

Open window for ventilation
Yes 15 0.59 [0.17 to 

1.13]
0.03 0.30

No 32 0.15 [0.06 to 
0.55]

 

Smoking
Yes 2 0.42 [0.33 to 

0.50]
0.56 0.08

No 45 0.19 [0.09 to 
0.77]

 

Family smoking
Yes 23 0.26 [0.09 to 

0.79]
0.82 0.03

No 24 0.21 [0.08 to 
0.69]

 

Wearing mask outdoors
Always 42 0.21 [0.09 to 

0.72]
0.55 0.09

Not always 5 0.33 [0.14 to 
1.19]

 

Type of mask used
Nylon, paper mask 38 0.19 [0.09 to 

0.72]
0.55 0.09

Others (N95, N97, 3D, 4D) 9 0.26 [0.16 to 
0.97]

 

House on main road
Yes 10 1.20 [0.33 to 

1.49]
0.01 0.37

No 37 0.20 [0.06 to 
0.59]

 

Travel distances (meters)
From home to school  1650.00 [800.00 

to 3500.00]
< 
0.001

0.59

From home to the main road  190.00 [77.00 to 
650.00]

0.72 0.05

Time of exposure to TRAP 
(min/day)

 38.00 [20.00 to 
60.00]

0.46 0.11

Table 3 
Association between respiratory outcomes (inflammatory cytokines and lung 
function) and AMBC area (n = 47).

Character Linear regression Multiple linear regression

Coefficient (95% CI) p Coefficient (95% CI) p

IL-8 (pg/mL) 0.25 (− 0.04 to 
0.53)

0.08 0.25 (− 0.05 to 
0.56)

0.09

TNF-α (pg/mL) 0.05 (− 0.14 to 
0.23)

0.61 0.02 (− 0.50 to 
0.01)

0.79

IFN-α (pg/mL) 0.04 (− 0.11 to 
0.20)

0.57 0.05 (− 0.11 to 
0.22)

0.51

FVC (% predicted) − 3.81 (− 9.94 to 
1.33)

0.14 − 2.85 (− 8.13 to 
2.43)

0.28

FEV1 (% 
predicted)

− 1.39 (− 7.29 to 
4.51)

0.63 − 0.10 (− 6.04 to 
5.85)

0.97

FEV1/FVC 0.02 (− 0.001 to 
− 0.05)

0.04 0.02 (− 0.004 to 
− 0.05)

0.02

FEF25-75 (% 
predicted)

4.35 (− 5.53 to 
14.24)

0.38 6.02 (− 4.35 to 
16.40)

0.24

* The recorded parameters, including FVC, FEV1, and FEF25-75 (as percent pre-
dicted using NHANES III), were adjusted for race, height, and gender. Data on 
inflammatory cytokines were log-transformed to address positive skewness.
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TRAP exposure. One study showed a slight elevation in serum TNF-α 
concentrations among cyclists, suggesting a potential systemic effect of 
inhaled BC (David et al., 2011). Similarly, a study conducted in London 
showed that the concentration of TNF-α was higher in cyclists during 
their commutes compared to those who do not cycle (Chinedu et al., 
2012). In the present study we did not show significant relationships 
between AMBC area and sputum concentrations of IL-8, TNF-α, and 
IFN-α. Similarly, a study in London found no correlation between TRAP 
exposure and the responsiveness of whole blood cytokines in the sample 
population (Gruzieva et al., 2017; Klümper et al., 2015). The airway 
epithelium plays a critical role in immune defense by acting as a physical 
barrier, facilitating ciliary action, and promoting mucus clearance, in 
addition to its involvement in inflammatory and antimicrobial responses 
through cytokine production (Calvén et al., 2020). Previous studies 
demonstrated that diesel exhaust particles not only increase cytokine 
production in human bronchial epithelial cells but also compromise the 
rigidity of the cytoskeleton and the adhesion of cell-matrix molecules 
(Doornaert et al., 2003), underscoring the complex interplay between 
air pollutants and the pulmonary immune response. In the present study, 
cytokine concentrations were measured in sputum samples, in contrast 
to the serum samples typically used in other investigations. A previous 
study demonstrated that sputum samples offer greater sensitivity for 
examining airway inflammatory responses in patients with COPD or 
asthma compared to serum samples (Cao et al., 2012). The small sample 
size in the present study is likely to mean that we were underpowered to 
determine the impact of AMBC area on cytokine secretion. Larger 
studies will be needed to address this.

5. Limitations

Some limitations of our study should be noted. Out of 120 healthy 
children recruited, 47 were able to provide adequate sputum samples. 

The success rate of sputum induction in this study was 39.16%, notably 
lower than the success rates reported in healthy children in prior studies 
(Gibson et al., 2003; Kulkarni et al., 2006; Liu, 2019). Although sputum 
induction is non-invasive and generally well tolerated, this technique is 
variability successful in children, leading to inconsistent yields of AMs. 
This variability was exacerbated by several children struggling to 
expectorate the sputum produced and others inadvertently swallowing 
it. We were unable to ensure the cytokines we measured in sputum were 
induced by air pollution exposure. Sputum contamination with saliva 
and respiratory secretions may have affected the cytokine values. 
Furthermore, the use of a questionnaire to collect information on res-
piratory symptoms and exposure to cigarette smoke may introduce 
recall bias among participants. Future studies should incorporate co-
tinine measurements in biosamples to better assess the impact of passive 
smoke exposure on AMBC area. It is also important to acknowledge that 
the black substance observed in macrophages may not necessarily be 
carbon. To account for this uncertainty, images showing characteristic 
features of bacteria in macrophages were excluded during image anal-
ysis, and carbon within macrophages was recorded as black. Lastly, due 
to the lack of prior data, we could not conduct a power analysis to es-
timate the number of participants required to achieve the distinction in 
exposure between sub-groups (e.g., mask-wearing vs. no mask-wearing). 
The small number of samples analysed (47) almost certainly mean our 
study was underpowered to detect associates with AMBC area. Finally, 
there remains uncertainty regarding the relative importance of various 
indices of TRAP exposure, such as PM10, PM2.5, and traffic volume in 
determining AMBC area. Different fuels burnt (e.g. diesel, petroleum, 
kerosene, etc) may result in differing amounts of BC in PM.

6. Conclusion

This study is the first to assess the effects of air pollution on 

Fig. 2. Bivariate correlations between biomarkers for exposure to air pollution and AMBC area. IL-8 denotes Interleukin-8, TNF-α denotes Tumor Necrosis Factor- 
alpha (TNF-α), and IFN-α denotes Interferon-alpha.
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Vietnamese children using AMBC area, obtained through sputum in-
duction, as a biomarker of individual TRAP exposure. Our study did not 
observe any significant associations between respiratory symptoms and 
AMBC area, which might be explained by the small sample size and the 
widespread use of face masks among children when outdoors. Addi-
tionally, exposure to air pollution, as measured by AMBC, was not 
associated with increased inflammatory markers or changes in lung 
function in healthy children. However, all sputum samples that con-
tained BC exhibited elevated cytokine concentrations, indicating that 
particulate air pollution might still trigger an inflammatory response, 
even if it does not directly impair lung function in this population. 
Additionally, we identified a correlation between increased AMBC and 
the habit of keeping windows open for better ventilation, distance from 
home to school, and proximity to the main road. These observations 
underscore the importance of proper ventilation and indoor air quality 
management to prevent or reduce health problems related to air pollu-
tion. Although our study could not definitively confirm that the black 
substance in AMBC was exclusively carbon, our findings provide more 
evidence supporting this identification and underscore its potential as a 
biomarker for individual exposure in future studies. Further studies with 
larger sample sizes and extended monitoring periods are necessary to 
explore the long-term impact of air pollution on children’s respiratory 
health.
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